Heat capacities of various solid linear macromolecules

H. S. Bu*, W. Aycock†, Stephen Z. D. Cheng‡ and Bernhard Wunderlich§

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA (Received 30 September 1987; accepted 9 March 1988)

Heat capacities at constant pressure and constant volume for the solid state are calculated from approximate vibrational spectra and compared with experimental data taken from a critical literature review. A total of 12 macromolecules are discussed: poly(isobutyl acrylate), poly(isobutyl methacrylate), poly(vinyl alcohol), poly(vinyl acetate), polyoxypropylene, poly[oxy-2,2-bis(chloromethyl)trimethylene], poly(vinyl benzoate), poly(vinyl p-ethylbenzoate), poly(vinyl p-isopropylbenzoate), poly(vinyl p-t-butylbenzoate), polycyclopentene and cis-1,4-polyisoprene. The results are compared with prior approximations on about 70 other polymers. For poly(vinyl acetate) new 'recommended data' are presented. The influence of methyl groups on heat capacity is discussed.

(Keywords: crystalline; glassy; heat capacity; polycyclopentene; poly(isobutyl acrylate); poly(isobutyl methacrylate); cis-1,4polyisoprene; poly[oxy-2,2-bis(chloromethyl)trimethylene]; polyoxypropylene; poly(vinyl acetate); poly(vinyl alcohol); poly(vinyl benzoate)s; vibrational spectra)

INTRODUCTION

Over the last few years we have developed a method to compute heat capacities of linear macromolecules from approximate frequency spectra¹. For the N skeletal vibrations of a macromolecule, a fit of the experimental heat capacity to a two-parameter (Θ_1 and Θ_2) Tarasov function is attempted. The parameter Θ_1 is characteristic of the upper-frequency limit of the one-dimensional, intramolecular vibrational spectrum. The parameter Θ_3 is the analogous limit of the three-dimensional, intermolecular vibrational spectrum. The frequencies Θ are expressed in kelvin $(1 \text{ K} = 0.695 \text{ cm}^{-1} \text{ or } 2.08 \times$ 10¹⁰ Hz). The remaining group vibrations can be approximated by single or narrow-range frequencies taken from normal-mode calculations of isolated chains, low-molecular-weight analogues, or experimentally identified infra-red or Raman frequencies. The total available body of experimental heat capacities was collected into a critically reviewed data bank² and then successively analysed. Polymers were grouped according to their chemical structure to observe regularities in the analysis into polyoxides³, fluorinated and chlorinated polyethylenes⁴, polypropylene^{5,6}, branched polymers⁶, polyesters⁷, polyamides⁸, polysiloxanes⁹ and phenylene-containing polymers¹⁰. Because of special interests, the polybutadienes¹¹ and polystyrenes (substituted and crosslinked)12 were analysed separately. This effort, covering some 70 polymers, left a number of experimental heat capacity data sets without analysis. All these are

This major effort on providing an improved basis of thermal analysis has led to a table of residual entropies of over 20 polymers, has enabled us to point out the limits of the two-phase description of semicrystalline polymers by finding a 'rigid amorphous fraction', metastable above the glass transition, and has resolved many questions of mesophase transitions (plastic, liquid and condis crystals)¹⁴. The present, last set of analyses covers a diverse group of polymers ranging from perfect correspondence of experimental heat capacities with the computation scheme (poly(isobutyl methacrylate), poly(vinyl alcohol), polyoxypropylene, poly[oxy-2,2bis(chloromethyl)trimethylene] and poly(vinyl benzoate)s, with errors below $\pm 3\%$ to marginal correspondence (poly(isobutyl acrylate), poly(vinyl acetate), polycyclopentene and cis-1,4-polyisoprene, with errors up to $\pm 5\%$). Finally, a few, rather complicated, polymers seem to deviate so much from linear macromolecular structure that they could not be fitted into the scheme of computation. These are not described paper (poly[carbonylimino(6-hydroxy-1.3phenylene)methylene(4-hydroxy-1,3-phenylene)iminocarbonyl(-1,3-phenylene], poly(oxy-2,6-diphenyl-1,4phenylene) and a series of eight polyheteroarylenes, with errors above 5%).

Note that all calculations have been carried to 1000 K, far above the melting temperature, and in most cases even the decomposition temperature. The reason for calculation to this unrealistic limit lies in the possibility of inclusion of some of these groups into high-temperature polymers where they exist at higher temperature in the solid state, and in the possibility of instantaneous heating to high temperatures in laser ablation studies where

included in this paper. Their discussion can be taken as a proving ground for the developed analysis system. For the future, we hope within the framework of the new ATHAS organization to provide continuously updated tables of heat capacity data¹³.

^{*} Present address: Department of Material Sciences, Fudan University, Shanghai, China

[†] Present address: NYS Dept. Env. Conservation, Bur. Waste Tech., 50 Wolf Road, Albany, NY 12233, USA

[‡] Present address: Institute and Department of Polymer Science, The University of Akron, Akron, OH 44325, USA

[§] Present address and to whom correspondence should be addressed: Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600, USA

Heat capacities of solid macromolecules: H. S. Bu et al.

Table 1 Number of vibrational modes

(a) CH ₃ CH ₃ ss. stretch CH ₃ ss. stretch 4 6 2 2 2 2 4 6 6 CH ₃ syn. stretch 1 6 2 2 2 2 4 6 6 CH ₃ syn. stretch 2 3 1 1 1 2 2 3 CH ₃ ss. deformation 4 6 2 2 2 2 4 6 6 CH ₃ syn. deformation 4 6 2 2 2 2 4 6 6 CH ₃ syn. deformation 4 6 2 2 2 2 4 6 6 CH ₃ syn. deformation 4 6 2 2 2 2 4 6 6 CH ₃ syn. deformation 6 CH ₃ syn. deformation 6 CH ₃ syn. deformation 6 CH ₃ cs. stretch 2 2 3 1 1 3 1 2 2 1 1 2 CH ₃ syn. stretch 2 2 1 1 3 1 1 2 1 1 2 CH ₃ syn. stretch 2 2 1 1 3 1 1 2 1 1 2 CH ₃ syn. stretch 2 2 1 1 3 1 1 2 1 1 2 CH ₄ syn. stretch 2 2 1 1 3 1 1 2 1 1 2 CH ₄ syn. stretch 2 2 1 1 3 1 1 2 1 1 2 CH ₄ syn. stretch 2 2 1 1 3 1 1 2 1 1 2 CH ₄ syn. stretch 2 2 1 1 3 1 1 2 1 1 2 CH ₄ syn. stretch 2 2 1 1 3 1 1 2 1 1 2 CH ₄ syn. stretch 2 2 1 1 1 3 1 1 2 1 1 2 CH ₄ syn. stretch 2 2 1 1 1 3 1 1 2 1 1 2 CH ₄ syn. stretch 3 1 1 2 1 1 2 2 1 1 2 CH ₄ syn. stretch 1 1 1 1 2 1 1 2 1 1 2 2 CH ₄ syn. stretch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Approximate mode	PIBA	PIBMA	PVA	PVAC	PCP	POP	PVB	PVEB	PVIPB	PVTBB	POCMM	PIP
CH, as. stretch 4 6 2 2 2 2 4 6 6 CH, sym. stretch 2 3 1 1 1 1 2 3 CH, as. deformation 4 6 2 2 2 2 2 4 6 CH, sym. deformation 4 6 2 2 2 2 2 4 6 CH, sym. deformation 4 6 2 2 2 2 2 4 6 CH, sym. deformation 4 6 2 2 2 2 2 4 6 CH, sym. deformation 4 6 7 2 2 2 2 4 6 CH, sym. deformation 4 6 7 2 2 2 2 4 6 CH, sym. deformation 4 6 7 2 2 2 2 4 6 CH, sym. deformation 4 6 7 2 2 2 2 4 6 CH, sym. deformation 5 7 2 2 2 1 1 2 3 1 1 2 2 1 1 2 2 CH, sym. deformation 7 2 1 1 2 2 1 1 2 2 CH, sym. stretch 2 2 1 1 1 3 1 1 2 1 1 2 2 CH, sym. stretch 2 2 1 1 1 3 1 1 2 1 1 2 2 CH, sym. stretch 2 2 1 1 1 3 1 1 2 1 1 2 2 CH, sym. stretch 2 2 1 1 1 3 1 1 2 1 1 1 2 CH, twist 2 2 2 1 1 1 3 1 1 2 1 1 1 2 CH, twist 3 1 1 2 1 1 1 2 1 1 1 2 CH, twist 4 2 2 2 1 1 1 3 1 1 2 1 1 1 2 CH, twist 5 2 2 1 1 1 3 1 1 2 1 1 1 2 CH, twist 6 7 2 1 1 1 3 1 1 2 1 1 1 2 CH, twist 7 2 2 1 1 1 3 1 1 2 1 1 1 2 CH, stretch 1 1 1 1 1 1 1 1 1 1 1 1 1 CH, stretch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(a) CH ₃						_						
CH ₃ sym. stretch 2 3 1 1 1 2 2 3 CH ₃ sym. deformation 2 3 1 1 1 1 2 2 3 CH ₃ sym. deformation 2 3 1 1 1 1 2 3 CH ₃ sym. deformation 2 3 1 1 1 1 2 3 CH ₃ sym. deformation 2 3 1 1 1 1 2 3 CH ₃ sym. deformation 2 3 1 1 1 1 2 3 CH ₃ sym. deformation 2 3 1 1 1 1 2 3 CH ₃ sym. deformation 2 3 1 1 1 1 2 3 CH ₃ sym. deformation 2 3 1 1 1 1 2 1 1 1 2 CH ₃ sym. stretch 2 2 1 1 1 3 1 1 2 1 1 1 2 CH ₃ sym. stretch 2 2 1 1 1 3 1 1 2 1 1 1 2 CH ₃ sym. stretch 2 2 2 1 1 1 3 1 1 2 1 1 2 CH ₃ sym. stretch 2 2 2 1 1 1 3 1 1 2 1 1 2 CH ₃ sym. stretch 2 2 2 1 1 1 3 1 1 2 1 1 2 CH ₃ sym. stretch 2 2 2 1 1 1 3 1 1 2 1 1 2 CH ₃ sym. stretch 2 2 2 1 1 1 3 1 1 2 1 1 2 CH ₃ sym. stretch 1 1 1 1 3 1 1 2 1 1 2 CH ₃ sym. stretch 1 1 1 1 1 3 1 1 2 1 1 2 CH ₃ sym. stretch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CH ₃ as. stretch	4	6		2		2		2	4	6		2
CH, as, deformation 4 6 2 2 2 2 4 6 6 CH, sym. deformation 2 3 1 1 1 1 2 3 3 CH; rock 4 6 6 2 2 2 2 2 4 6 6 CH; cstretch 2 3 3 1 1 1 1 1 2 3 3 CH; rock 4 6 6 2 2 2 2 2 4 6 6 CH; cstretch 2 3 3 1 1 1 1 1 2 3 3 CH; rock 4 6 6 2 2 2 2 2 4 6 6 CH; cstretch 2 2 3 1 1 1 1 1 2 2 3 CH; rock 4 6 6 2 2 2 2 2 4 6 6 CH; cstretch 2 2 2 1 1 3 3 1 1 2 2 1 1 2 2 CH; rock 5 2 2 1 1 3 3 1 1 2 2 1 1 2 2 CH; rock 6 2 2 2 1 1 3 3 1 1 2 2 1 1 2 2 CH; rock 6 2 2 2 1 1 3 3 1 1 2 2 1 1 1 2 2 CH; rock 6 2 2 2 1 1 3 3 1 1 2 2 1 1 1 2 CH; rock 6 2 2 2 1 1 3 3 1 1 2 2 1 1 1 2 CH; rock 6 2 2 2 1 1 3 3 1 1 2 2 1 1 1 2 CH; rock 7	CH ₃ sym. stretch	2	3		1		1			2			1
CH, rock 4 6 2 2 2 2 4 6 6	CH ₃ as. deformation	4	6		2		2		2	4	6		2
CH; Cestretch 2 3 1 1 1 2 3 (b) CH; (c) CH (c		2							1	2	3		1
(b) CH; CH; CH; as, stretch 2 2 1 1 1 3 1 1 2 1 1 2 CH; sym, stretch 2 2 1 1 1 3 1 1 2 1 1 2 CH; sym, stretch 2 2 2 1 1 3 1 1 2 1 1 2 CH; sym, stretch 2 2 2 1 1 3 1 1 2 1 1 2 CH; sym, stretch 2 2 2 1 1 3 1 1 2 1 1 2 CH; was 2 2 2 1 1 3 3 1 1 2 1 1 2 CH; was 2 2 2 1 1 3 3 1 1 2 1 1 2 CH; was 2 2 2 1 1 3 3 1 1 2 1 1 2 CH; was 2 2 2 1 1 3 3 1 1 2 1 1 2 CH; was 2 2 2 1 1 3 3 1 1 2 1 1 2 CH; was 2 2 2 1 1 3 3 1 1 2 1 1 2 CH; was 2 2 2 1 1 3 3 1 1 2 2 1 1 2 CH; was 2 2 2 1 1 3 3 1 1 2 2 1 1 2 CH; was 2 CH; was 2 2 2 1 1 3 3 1 1 2 2 1 1 1 2 CH; was 2 CH; wa					2		2		2		6		2
CH ₃ sys. stretch	CH ₃ -C stretch	2	3		1		1		1	2	3		1
CH ₂ sym. stretch 2 2 1 1 3 1 1 2 1 1 2 CH ₃ wag 2 2 1 1 3 1 1 2 1 1 2 CH ₄ wag 2 2 1 1 3 1 1 2 1 1 2 CH ₅ wag 2 2 1 1 3 1 1 2 1 1 2 CH ₇ rock 2 2 1 1 3 1 1 2 1 1 2 CH ₇ rock 2 2 1 1 3 1 1 2 1 1 2 CH ₇ rock 2 2 1 1 3 1 1 2 1 1 2 CH ₇ rock 2 2 1 1 3 1 1 2 1 1 2 CH ₇ rock 2 2 1 1 3 1 1 2 1 1 2 CH ₇ rock 2 2 1 1 3 1 1 2 1 1 2 CH ₇ rock 2 2 1 1 1 3 1 1 2 1 1 2 CH ₇ rock 2 1 1 1 2 1 1 2 1 1 2 CH ₇ rock 3 1 1 2 2 1 1 2 2 1 1 2 CH ₇ rock 4 2 2 2 4 2 2 2 4 2 2 CH ₇ rock 4 2 2 2 4 2 2 2 4 2 2 CH ₇ rock 4 2 2 2 4 2 2 2 2 4 2 CH ₇ rock 4 2 2 2 4 2 2 2 2 4 2 CH ₇ rock 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_				_			_				
CH ₃ bend 2 2 1 1 3 1 1 2 1 1 2 CH ₃ was 2 2 2 1 1 3 3 1 1 2 1 1 2 CH ₄ was 2 2 2 1 1 3 3 1 1 2 1 1 2 CH ₅ wist 2 2 2 1 1 3 3 1 1 2 1 1 2 CH ₅ wist 2 2 2 1 1 3 3 1 1 2 1 1 2 CH ₅ wist 2 2 2 1 1 3 3 1 1 2 1 1 2 CH ₅ wist 2 CH ₅ wist 2 2 2 1 1 3 3 1 1 2 2 1 1 2 CH ₅ wist 2 CH ₅ wist 2 2 2 1 1 3 3 1 1 2 2 1 1 2 CH ₅ wist 2 CH ₅ wis	CH ₂ as. stretch												2
CH; was 2 2 1 1 3 1 1 2 1 1 2 CH; rock 2 2 1 1 3 1 1 2 1 1 2 CH; rock 2 2 2 1 1 3 1 1 2 1 1 2 CH; rock 2 2 2 1 1 3 1 1 2 1 1 2 CH; rock 2 2 1 1 1 3 1 1 2 1 1 2 CH; rock 2 2 1 1 1 3 1 1 2 1 1 2 CH; rock 2 1 1 1 1 3 1 1 2 CH; rock 2 1 1 1 1 2 CH; rock 2 1 1 1 1 2 CH; rock 2 CH; rock 2 1 1 1 1 2 1 1 1 2 CH; rock 2 CH; rock 2 1 1 1 1 2 2 1 1 1 1 2 CH; rock 2 CH; ro	CH ₂ sym. stretch												2
CH; rivist 2 2 1 1 3 1 1 2 1 1 2 C-C Stretch 1 1 1 1 1 2 1 1 2 C-C Stretch 1 1 1 1 1 3 1 1 2 1 1 2 C-C Stretch 1 1 1 1 1 1 1 2 1 1 1 2 C-C Stretch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													2
CH ₂ rock 2 2 1 1 3 1 1 2 1 1 2 (c) CStretch 1													2
C-C stretch													2
C-H stretch 2 1 1 1 2 1 1 1 2 1 1 1 2 1 C-H bend 4 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 1 4 2 C-C stretch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2										2 2
C-H stretch 2 1 1 1 2 1 1 1 2 1 1 1 2 1 C-H bend 4 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 1 4 2 C-C stretch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(a) CU												
C-H bend 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 4 2 2 4 2 2 4 4 2		2	1	1	1	2	1	1	1	2	1		1
C-C stretch 1 1 1 1 1 1 2 1													2
C-C stretch			-				-						1
C-C stretch	(d) C (R., R.)								·				
C-COO stretch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C-C stretch	1	3								1		
C-COO stretch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(e) COO		712			-14							
C=O stretch		1	1		1			1	1	1	1		
C-O stretch													
C=O out-of-plane bend 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		1			1		1	1		
C=O out-of-plane bend 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1		1			1	1	1	1		
C-O stretch		1	1		1			1	1	1	1		
O-H stretch O-H bend C-OH stretch 1 C-OH stretch 1 C-OH bend 2 (h) C=C C=C stretch 1 (i) Chain bend Polyoxide 1 1 (i) Chain torsion and bend Polyoxide 1 1 (k) Phenyl All vibrational modes (i) in Table 2 except 4408, 2161 and 1465 K 28 28 (m) CH ₂ Cl CH ₂ sym. stretch CH ₂ sym. stretch CH ₂ sym. stretch CH ₂ bend CH ₂ wag CH ₂ twist CH ₂ trock CH ₂ tock CH ₂ tock CH ₃ cock CH ₄ cock CH ₂ cock CH ₄		1	1		1		2	1	1	1	1	2	
O-H stretch	(a) OH												
O-H bend 2 C-OH stretch 1 C-OH stretch 1 C-OH bend 2 (h) C=C C=C stretch 1 (i) Chain bend Polyoxide 1 1 (j) Chain torsion and bend Polyoxide 1 1 (k) Phenyl All vibrational modes 31 (l) Phenylene All vibrational modes of (i) in Table 2 except 4408, 2161 and 1465 K 28 28 28 (m) CH ₂ Cl CH ₂ as. stretch 2 2 CH ₂ years, stretch 2 2 CH ₂ years, stretch 2 2 CH ₂ years 4 2 CH ₂ years 4 2 CH ₂ twist 2 2 CH ₂ trock 2 CH ₂ t				1									
C-OH stretch C-OH bend 2 (h) C=C C=C stretch 1 (i) Chain bend Polyoxide 1 1 (j) Chain torsion and bend Polyoxide 1 1 (k) Phenyl All vibrational modes 31 (l) Phenylene All vibrational modes of (i) in Table 2 except 4408, 2161 and 1465 K 28 28 (m) CH ₂ Cl CH ₂ as, stretch CH ₂ sym. stretch CH ₂ wag CH ₂ twist CH ₂ twist CH ₂ rock CH ₂ cock C													
C-OH bend 2 (h) C=C C=C stretch 1 (i) Chain bend Polyoxide 1 1 (j) Chain torsion and bend Polyoxide 1 1 (k) Phenyl All vibrational modes 31 (l) Phenylene All vibrational modes of (i) in Table 2 except 4408, 2161 and 1465 K (m) CH ₂ Cl CH ₂ as. stretch CH ₂ sym. stretch CH ₂ sym. stretch CH ₂ wag CH ₂ wag CH ₂ wag CH ₂ twist CH ₂ rock CH ₂ cym.													
C=C stretch 1													
C=C stretch 1	(h) C-C												
Polyoxide 1						1							1
Polyoxide 1	(i) Chain hand												
Polyoxide						1					1		
Polyoxide	(i) Chain torsion and ben												
All vibrational modes (I) Phenylene All vibrational modes of (i) in Table 2 except 4408, 2161 and 1465 K (m) CH ₂ Cl CH ₂ as. stretch CH ₂ sym. stretch CH ₂ bend CH ₂ wag CH ₂ wag CH ₂ twist CH ₂ rock 2 CH ₂ rock 2 CH ₂ rock 2 CH ₂ to check 2 CH ₂		-		1					1				
All vibrational modes (1) Phenylene All vibrational modes of (i) in Table 2 except 4408, 2161 and 1465 K (m) CH ₂ Cl CH ₂ as. stretch CH ₂ sym. stretch CH ₂ bend CH ₂ wag CH ₂ twist CH ₂ rock 2 CH ₂ rock 3 2 2 2 2 2 2 2 2 2 2 2 2	(k) Phenyl											· · · · · · · · · · · · · · · · · · ·	
All vibrational modes of (i) in Table 2 except 4408, 2161 and 1465 K (m) CH ₂ Cl CH ₂ as. stretch CH ₂ sym. stretch CH ₂ bend CH ₂ wag CH ₂ twist CH ₂ rock 28 28 28 28 28 28 28 28 28 2								31					
All vibrational modes of (i) in Table 2 except 4408, 2161 and 1465 K (m) CH ₂ Cl CH ₂ as. stretch CH ₂ sym. stretch CH ₂ bend CH ₂ wag CH ₂ twist CH ₂ rock 28 28 28 28 28 28 28 28 28 2	(1) Phenylene												
$\begin{array}{c} \text{CH}_2 \text{ as. stretch} & 2 \\ \text{CH}_2 \text{ sym. stretch} & 2 \\ \text{CH}_2 \text{ bend} & 2 \\ \text{CH}_2 \text{ wag} & 2 \\ \text{CH}_2 \text{ twist} & 2 \\ \text{CH}_2 \text{ rock} & 2 \\ \end{array}$		(i) in Tai	ble 2 except 4	408, 216	1 and 1465	5 K			28	28	28		
CH ₂ as. stretch 2 CH ₂ sym. stretch 2 CH ₂ bend 2 CH ₂ wag 2 CH ₂ twist 2 CH ₂ rock 2	(m) CH ₂ Cl								_				
CH_2 sym. stretch $ 2 \\ CH_2 \text{ bend} $ $ 2 \\ CH_2 \text{ wag} $ $ 2 \\ CH_2 \text{ twist} $ $ 2 \\ CH_2 \text{ rock} $ $ 2 \\ 2 \\ CH_2 \text{ rock} $												2	
CH ₂ bend 2 CH ₂ wag 2 CH ₂ twist 2 CH ₂ rock 2	CH ₂ sym. stretch											2	
CH ₂ wag CH ₂ twist 2 CH ₂ rock 2	CH ₂ bend												
CH ₂ twist 2 CH ₂ rock 2	CH ₂ wag												
CH ₂ rock	CH ₂ twist											2	
•	CH ₂ rock												
C_CH ₂ Cl stretch	C-CH ₂ Cl stretch											2	
C–Cl stretch 2	C-Cl stretch												
C-Cl bend 2	C-Cl bend											2	
(n) Skeletal vibration	(n) Skeletal vibration	40				10	-	10	1.5	10	21	12	11
18 21 4 11 10 7 10 15 18 21 12		18	21	4	11	10	/	10	12	18		12	11
Total 63 72 21 36 39 30 57 75 84 93 48	Total	63	72	21	36	39	30	57	75	84	93	48	39

Table 2 Group vibration frequencies in kelvin $(h\nu/k)^a$

Approx. vibrational mode	N	Frequency (K)
(a) CH ₂ - (POCMM)		
CH ₂ as. stretch	1.00	4148
CH ₂ sym. stretch	1.00	4098
CH ₂ bend	1.00	2075
CH ₂ wag	0.65	1698-1977
2	0.35	1977
CH ₂ twist and rock	0.48	1690-1874
2	0.52	1874
C-C stretch	0.34	1378-1638
	0.35	1378-1525
	0.31	1525
CH ₂ rock and twist	0.04	1494
2	0.59	1038-1494
	0.37	1079
(b) CH ₂ -CHCH ₃ - (PIBA, PIBMA, PO	P POCMN	M PVAC PVA
PVB, PVEB, PVIPB, PVTBB)	1,100m	1,1 1/10,1 1/1,
CH ₃ as. stretch	1.00	4262
CH ₃ as. stretch	1.00	4259
CH ₃ as. stretch	1.00	4213
		4181
CH sym stretch	1.00	
CH ₃ sym. stretch	1.00	4147
CH ₂ sym. stretch	1.00	4085
CH ₃ as. bend	1.00	2107
CH ₃ as. bend	1.00	2101
CH ₂ bend	1.00	2094
CH ₃ sym. bend	0.25	1987
	0.38	1973–1987
	0.37	1973
CH bend	0.42	1963–1973
	0.58	1966
CH bend	0.64	1944
	0.28	1916-1944
	80.0	1916
CH ₂ wag	0.18	1876
2	0.43	1842-1876
	0.39	1846
CH ₂ twist	0.33	1722-1791
(CH ₃ rock)	0.55	1695–1722
(CII3 lock)	0.33	1695
C-C chain stretch	0.12	1685
C-C chain stretch		
C CH stratch	0.84	1650–1685
C-CH ₃ stretch	0.44	1568–1614
CH 1 (CH)	0.56	1534–1614
CH_3 rock $(+CH_2$ wag)	0.55	1453–1521
	0.45	1453
CH ₃ rock (+C-C chain stretch)	0.65	1361–1393
	0.21	1333–1361
	0.14	1336
CH ₂ rock	0.52	1222–1295
	0.48	1289
C-C chain stretch	0.17	1197
	0.55	1167-1198
	0.28	1167
(-) CH CL (DOC) (DO		
(c) CH ₂ Cl- (POCMM)	4 = -	422.4
C-H as. stretch	1.00	4324
C-H sym. stretch	1.00	4255
CH ₂ bend	1.00	2079
CH ₂ wag	1.00	1823
CH ₂ twist	1.00	1718
CH ₂ rock	1.00	1264
C-CH ₂ Cl stretch	1.00	1514
C-Cl stretch	1.00	1089
C-Cl bend	1.00	376
(d) CH ₂ -C (R ₁ , R ₂) (PIBA, PIBMA, PV C-C stretch	/TBB)	1164–1680
(e) CH ₂ -CH=CH-CH ₂ - (PCP)		
CH stretch	2.00	4347
CH ₂ as. stretch CH ₂ sym. stretch	2.00 2.00	4204 4007
C=C stretch	1.00	4097 2387
CH ₂ bend	2.00	
Ozz Dolla	2.00	2078

Table 2—continued		
Approx. vibrational mode	N	Frequency (K)
CH ₂ wag	0.70	1977
	1.30	1698-1977
CH ₂ twist	0.96	16981874
	1.04	1874
CH bend	4.00	1016–1914
C-C stretch	0.93	1525
	1.02	1378–1638
	1.05	1378–1525
CH ₂ rock	80.0	1494
	1.18	1038–1494
	0.74	1079
(f) -OH (PVA)	1.00	4007
O-H stretch	1.00	4806
O-H bend	1.00	1994
O-H rock	1.00	921
C-OH stretch	1.00	1577
C-OH bend	1.00	691
C-OH rock	1,00	590
(g) CO-O- (PIBA, PIBMA, PVAC, PVB,		
C-COO stretch	1.00	1215
C=O stretch	1.00	2530
C-O stretch	1.00	1800
C=O in-plane bend	1.00	980
C=O out-of-plane bend	1.00	840
(h) C-O-C- (PIBA, PIBMA, PVAC, PVB,	PVEB	, PVIPB, PVTBB,
POP, POCMM)	0.22	1205
C-O stretch	0.22	1385
	0.11	1632
O. C. atmatah	0.67	1385–1632
O-C stretch	1.00	1305
(i) Phenyl (PVB, PVEB, PVIPB, PVTBB)		
C-H stretch	1.00	4408 ^b
C-H stretch	1.00	4397
C-H stretch	1.00	4388
C-H stretch	1.00	4378
C-H stretch	1.00	4371
C-C stretch	1.00	2298
C-C stretch	1.00	2281
CCH bend, C-C stretch	1.00	2161
CCH bend	1.00	2074
C-C stretch	1.00	1918
C-C stretch	1.00	1876
CCH bend	1.00	1739
CCH bend	1.00	1682
CCH bend, C-C stretch	1.00	1656
C-C stretch, CCH bend	1.00	1538
CCC bend, C-C stretch	1.00	1502
CCC bend, C-C stretch	1.00	1479
C-H wag	1.00	1465 ^b
C-H wag	1.00	1386
C-H wag	1.00	1328
C-H wag	1.00	1232
C-C stretch (C ₆ H ₅ -C)	0.23	1139
	0.32	1112–1139
	0.45	1112–1135
C-H wag, C ₆ H ₅ -C wag	1.00	1097
C-H wag	1.00	1010
CCC bend	1.00	904
CCC bend	0.31	846-862
	0.30	858–862
	0.35	858–902
D	0.04	902
Ring mode, coupled to the backbone chain	0.42	771–791
	0.32	771–800
GGG1 1/GW =	0.26	815
CCC bend (C ₆ H ₅ -C)	0.31	633
	0.32	633–728
0.04	0.37	728
C-C torsion	1.00	584

Table 2-continued

Approx. vibrational mode	N	Frequency (K)
CCC rock (C ₆ H ₅ -C)	0.16	435–451
	0.39	451–546
D ' 1 11 11 11 11 11	0.45	546
Ring mode, coupled to the backbone chain C-C torsion	1.00	348
(j) CH=CCH ₃ -CH ₂ -CH ₂ (PIP)		
CH stretch	1.00	4338.0
CH ₃ as. stretch	2.00	4266.0
CH ₂ as. stretch	1.00	4205.6
CH ₂ as. stretch	1.00	4192.7
CH ₃ sym. stretch	1.00	4138.0
CH ₂ sym. stretch	1.00	4094.8
CH ₂ sym. stretch	1.00	4089.1
C=C stretch	1.00	2384.1
CH ₃ as. bend	0.18	2109.3
	0.66	2109.3-2282.2
	0.16	2282.2
CH ₃ as. bend	1.00	2103.5
CH ₂ bend	1.00	2100.6
CH ₂ bend	1.00	2092.0
CH_3 sym. bend (+C-C= stretch)	1.00	2005.7
CH_2 wag + twist (+C-C= stretch)	0.79	1915.0-2005.7
	0.21	2005.7
CH ₂ twist	1.00	1890.6-1915.0
CH_2 wag + twist (+C-C= stretch)	0.60	1871.9
	0.23	1842.4-1871.9
	0.17	1842.4
CH_2 wag + twist (+ C - C = stretch)	1.00	1812.9
CH_2 wag $+=CH$ bend (ip)	0.43	1748.1-1789.7
	0.57	1766.8-1789.7
CH ₂ wag	0.52	1604.3-1624.3
-	0.48	1624.3
C-CH ₃ stretch	0.17	1564.0
·	0.48	1488.9-1564.0
	0.16	1488.9
	0.19	1488.9-1541.5
CH ₃ rock	1.00	1486.3
C-C stretch	0.80	1413.8-1451.3
	0.20	1451.3
CH_3 rock + CH_2 rock (+ $C-C$ - stretch)	0.10	1410.7
	0.23	1383.7-1410.7
	0.50	1383.7-1421.3
	0.17	1421.3
CH_2 rock + CH_3 rock (+ $C-C$ - stretch)	0.24	1376.1
• • • • • • • • • • • • • • • • • • • •	0.53	1326.5-1376.1
	0.23	1326.5
CH bend (op)	0.23 0.50	1326.5 1240.8–1275.4
CH bend (op)		
•	0.50	1240.8-1275.4
CH ₂ rock	0.50 0.50	1240.8–1275.4 1244.5
•	0.50 0.50 1.00	1240.8–1275.4 1244.5 1141.5

^a Sources of the listed approximate frequency ranges:

(c) From i.r. spectrum published in ref. 19

thermal data are needed for highly superheated structures.

RESULTS

Poly(isobutyl acrylate) and poly(isobutyl methacrylate)

Poly(isobutyl acrylate) (PIBA) and poly(isobutyl methacrylate) (PIBMA) belong to the series of polyacrylates and polymethacrylates analysed before⁶. The same approximations used to calculate the heat capacity for this earlier series of polymers is followed. The types of group vibrations and number of skeletal modes are listed in Table 1 for all polymers analysed in this paper. The approximate group vibrational frequencies used for computation are listed in Table 2.

The recommended heat capacity data² below the glass transition temperature (249 K) for PIBA consist of only a few points in the temperature region 220-240 K. They were initially used to calculate Θ_1 , but resulted in a low average Θ_1 , of 452.6 ± 34.1 K, with a small, but constantly increasing, error. This was taken as an indication that the experiments are still too close to the glass transition. Clearly, lower-temperature heat capacity measurements must be made for this polymer to settle discussions of Θ_1 and Θ_3 . Since all acrylates showed, however, a continuous change in Θ_1 with chemical structure (equation (4) in ref. 6), we could estimate that Θ_1 should be 523.8 K. Similarly, Θ_3 can be assumed to be 90 K, similar to poly(n-butyl acrylate) (88.2 K). The heat capacity computed thus, without use of experimental data, is plotted in Figure 1. Figure 2 shows the difference from experiment for the few data points. The average and



Figure 1 Computed heat capacities at constant volume of solid PIBA and PIBMA: upper curves, total heat capacities; lower curves, group vibration contributions; intermediate curves, skeletal vibration contributions

⁽a) From normal-mode calculation of polyethylene summarized in

⁽b) From normal-mode calculation of polypropylene analysed in refs 5 and 6

⁽d) Approximated from polypropylene in refs 5 and 6

⁽e) From i.r. and Raman spectra as evaluated in ref. 11

⁽f) Extracted from i.r. spectrum as given in ref. 16

⁽g) See ref. 7

⁽h) See ref. 3

⁽i) From normal-mode calculation of polystyrene and model compounds as used in ref. 12

normal-mode calculation of trans-1,4-poly(2-(j) From methylbutadiene) as described in ref. 20 ^b Frequences omitted for phenylene group (PVEB, PVIPB, PVTBB)

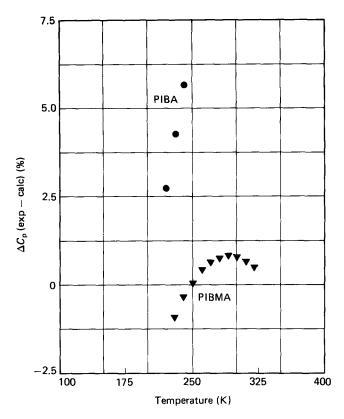


Figure 2 Error plot for Figure 1, recalculated into heat capacity at constant pressure using equation (1)

r.m.s. errors are $4.2 \pm 1.5\%$. The universal value of A_0 , 5.11×10^{-4} K mol J⁻¹, was assumed for computation of C_p , the heat capacity at constant pressure, since no expansivity or compressibility data are available. The melting temperature was approximated as 3/2 times the glass transition temperature in the Nernst-Lindemann expression¹⁵:

$$C_{\rm p} - C_{\rm v} = A_0 C_{\rm p}^2 T / T_{\rm m} \tag{1}$$

For atactic PIBMA the glass transition temperature is 326 K, sufficiently high to use available experiments from 230 to 320 K for the evaluation of Θ_1 . The average of Θ_1 over this temperature range is 594.9 ± 13.3 K. The value of Θ_3 , again, has to be a guess. In comparison with poly(n-butyl methacrylate) (58 K), Θ_3 was chosen to be 60 K for the computation. Figures 1 and 2 show the results and Tables 1 and 2 summarize the group vibrations used for the calculations. The average and r.m.s. deviation from the experiment are $0.3 \pm 0.6\%$. PIBMA is thus one of the polymers that fits the computation scheme very well.

As for PIBA, the universal A_0 was used in equation (1) and $T_{\rm m}^{\circ}$ was assumed to be at $(3/2)T_{\rm g}$. The Θ_1 derived from the experimental heat capacity fits the straight-line relation between Θ_1 and $(1/M)^{1/2}$ derived for other methacrylates (equation (4) of ref. 6).

Poly(vinyl alcohol)

Poly(vinyl alcohol) (PVA) has a well analysed infra-red spectrum¹⁶. The vibrational frequencies for O-H stretching, bending and rocking and analogous C-OH modes are listed in Table 2 together with the C-H and C-C vibrations taken from the polyethylene spectrum.

Recommended heat capacity data² are available from 60 to 300 K. These were used to compute Θ_1 to be 494.8 \pm

21.1 K (N=4) in the temperature range from 70 to 230 K. An attempt to fit Θ_3 at the lowest temperature range for experimental data led to an estimate of 119.1 K. Figures 3 and 4 show the results using the universal A_0 and an estimated $T_{\rm m}^{\circ}$ of 520 K in equation (1). The average and r.m.s. deviations are $2.4 \pm 3.9\%$.

The data fit well enough to include PVA into the group of macromolecules with good correspondence between experiment and computation. The somewhat larger error may be connected with the experimental data originating from a poorly characterized sample². Above 260 K the experimental data deviate more from the calculation (see Figure 4). Presumably one approaches the glass transition, reported to occur at 358 K.

The intramolecular structure of PVA (side-chain mass 17 g mol⁻¹), after proper accounting for the group vibrations, is similar to polypropylene⁵ (side-chain mass 15 g mol⁻¹) and poly(vinyl fluoride)⁴ (side-chain mass 19 g mol⁻¹). When calculating Θ_1 for all three polymers for four skeletal modes, indeed, three similar Θ_1 values result: 495, 448 and 440 K, respectively. This supports the observations that the heat capacity due to skeletal vibrations of carbon-backbone polymers are largely only mass-dependent after accounting for the group vibrations. For Θ_3 , similarly, values of 119, 87 and 105 K, respectively, were needed to account for the measured heat capacities. Not enough information on crystallinity and intermolecular forces is available for those three polymers to consider the variation in Θ_3 .

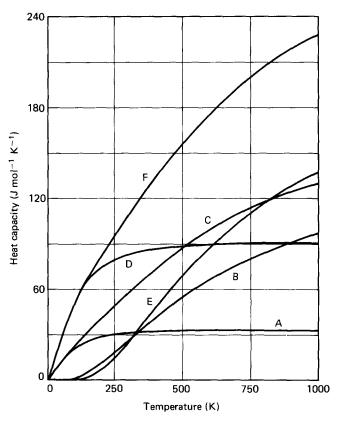


Figure 3 Computed heat capacities at constant volume of solid PVA and PVAC: curves A, B, C and D, E, F represent the skeletal vibration contributions, group vibrations and total heat capacities of PVA and PVAC, respectively

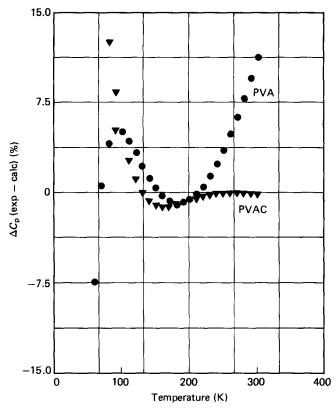


Figure 4 Error plot for Figure 3, recalculated into heat capacity at constant pressure using equation (1)

Poly(vinyl acetate)

The poly(vinyl acetate) (PVAC) group vibrations, listed in Tables 1 and 2, correspond closely to the reported, assigned infra-red vibrations¹⁷. Experimental heat capacities are available² between 80 and 300 K. It is of interest to note that PVAC is an isomer of poly(methyl acrylate). Structurally the two polymers differ only by a reversal of the carboxylate group. Such changes do not influence the assignment of approximate group vibrations.

In transcribing the heat capacity data in ref. 2, an error occurred, however, in setting the zero of the published graph. The corrected data are shown in Table 3. With these and a Θ_3 chosen in accord with poly(methyl acrylate) to be 86.3 K, the data shown in Figures 3 and 4 were obtained. The two isomers, PVAC and poly(methyl acrylate), have Θ_1 parameters of 581.0 ± 30.3 and 552 K, respectively, with 11 skeletal vibrations. The average and r.m.s. deviation of the corrected experimental data from the calculation are $0.85 \pm 3.4\%$. As with many of the other polymers, an experiment-based Θ_3 value would be of interest to discuss intermolecular force differences, but requires C_p data in the 10-80 K temperature range. The glass transition of PVAC is $304 \,\mathrm{K}$ ($\Delta C_p = 46.7$ $(\Delta C_p = 42.3)$ $JK^{-1} mol^{-1}$) compared to 279 K $J K^{-1} mol^{-1}$) for poly(methyl acrylate).

Both isomers fit the relationship for Θ_1 established for branched polymers⁶ well. It is also of interest to note that the change in heat capacity at $T_{\rm g}$ corresponds to four mobile 'beads' freezing according to the semiempirical scheme developed some time ago¹⁸. Both main chain and side chain account for approximately two beads, each when using the average of about 11 J K⁻¹ mol⁻¹ as ΔC_p per mole of beads. This should be an indication that the

main chain and side chain contribute and freeze similarly at the glass transition temperature.

Polyoxypropylene and poly[oxy-2,2-bis(chloromethyl)trimethylene]

(POP) and Polyoxypropylene poly[oxy-2,2bis(chloromethyl)trimethylene] (POCMM), also known under the tradename Penton (Hercules Co.), are substituted members of the polyoxide series of macromolecules analysed earlier³. The group vibrations in Tables 1 and 2 were chosen accordingly. For POP recommended data between 80 and 190 K for glass and semicrystalline samples were used to calculate Θ_1 $(493.9 \pm 12.7 \text{ K})$ for N=7 skeletal vibrations. At 90 K a Θ_3 value of 111.9 K can be estimated. The results are displayed in Figures 5 and 6. The calculated C_p matches the experimental C_p to $0.58 \pm 1.0\%$ (average and r.m.s. error) in a very good correspondence. The universal constant A_0 and a $T_{\rm m}^{\circ}$ of 368 K were used in $C_{\rm p} - C_{\rm v}$ calculations of equation (1).

Table 3 Recommended heat capacity data for amorphous poly(vinyl acetate)

T (K)	Heat capacity (J K ⁻¹ mol ⁻¹)
80.0	46.47
90.0	49.44
100.0	52.41
110.0	55.38
120.0	58.36
130.0	61.33
140.0	64.30
150.0	67.27
160.0	70.25
170.0	73.22
180.0	76.19
190.0	79.16
200.0	82.14
210.0	85.11
220.0	88.08
230.0	91.05
240.0	94.03
250.0	97.00
260.0	99.97
270.0	102.9
273.15	103.9
280.0	105.9
290.0	108.9
300.0	111.9
$304.0 \ (T_{\rm g})$	113.0
$304.0 \ (T_{\rm g})$	159.4
310.0	159.6
320.0	160.3
330.0	160.9
340.0	161.5
350.0	162.1
360.0	162.7
370.0	163.3

^a This table contains more significant figures than are justified by both source of data and data treatment. The extra significant figures are included only for the purpose of smooth representation. It replaces the recommended (1980) data table 39 (J. Phys. Chem. Ref. Data, 1983, 12,

Heat capacity in the solid state (80-304 K):

 $C_p = 0.297224T + 22.6873 (\pm 0.6\%)$

Heat capacity in the liquid state (304-370 K):

 $C_p = 0.0617442T + 140.497 (\pm 0.1\%)$

Data from Shieman, M. S., Rabinovich, I. B. and Ovchinnikov, Y. V. Vysokomol. Soedin. (A) 1972, 14, 377

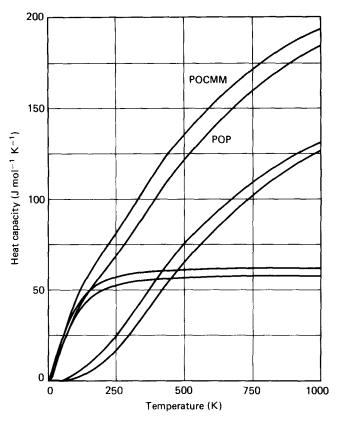


Figure 5 Computed heat capacities at constant volume of solid POP and POCMM: upper curves, total heat capacities; lower curves, group vibration contributions; intermediate curves, skeletal vibration contributions

A comparison of the Θ_1 values of polyethylene (Θ_1 = 519 K, N = 4)³ and polypropylene ($\Theta_1 = 714$ K, N = 7)⁵ with polyoxyethylene $(\Theta_1 = 353 \text{ K}, N = 4)^3$ and POP $(\Theta_1 = 494 \text{ K}, N = 7)$ shows similar effects on the introduction of the -CH₃. For both sets of polymers the ratio of the Θ_1 temperatures is 1.4. The change in Θ_1 is not caused by the increase in repeat-unit mass, as suggested for the PVA case. A larger-mass repeat unit would lead to a reduction of Θ_1 on substitution, rather than an increase. The increase in Θ_1 on substitution is the result of the more or less arbitrary addition of the two $HC-CH_3$ bending (555–830 K) and one torsional vibration (296 K)⁵ to the skeletal vibrations. Recalculating the heat capacities for N = 4 would for both substituted polymers lead to the expected decrease in Θ_1 (refs 3 and 5).

POCMM has additional, low-frequency group vibrations due to the substitution of H by Cl. These frequencies were approximated by the known data for 1,1-dichloroethane ¹⁹ and are listed in *Tables 1* and 2. The experimental heat capacity of a semicrystalline sample led to recommended data between 10 and 270 K (ref. 2). With 12 skeletal vibrations the following parameters were determined: $\Theta_1 = 462.7 \pm 41.9 \text{ K}$ and $\dot{\Theta}_3 = 43.9 \text{ K}$. The results are shown in Figures 5 and 6. Although the variation in Θ_1 is rather high, the experimental heat capacities are reproduced well. The average and r.m.s. deviations are $-0.15\pm2.4\%$ in the temperature region from 70 to 270 K. \overline{A}_0 was given a value of 0.0014 K mol J^{-1} , instead of the universal 0.00511 K mol J^{-1} , and was used as a third fitting parameter, with $T_{\rm m}$ in equation (1) estimated to be $3T_g/2 = 417 \text{ K}$.

Poly(vinyl benzoate)s

Four different poly(vinyl benzoate)s were analysed: poly(vinyl benzoate) (PVB), poly(vinyl p-ethylbenzoate) (PVEB), poly(vinyl p-isopropylbenzoate) (PVIPB) and poly(vinyl p-t-butylbenzoate) (PVTBB). The group vibrations were approximated making using of prior analyses of polystyrene, polyesters, vinyl polymers and branch groups. The vibration types, their frequencies and the appropriate references are given in *Tables 1* and 2. All of the heat capacity measurements were done starting from 190 K, using X-ray amorphous polymers with glass transition temperatures ranging from 330 to 394 K (ref. 2). The results are shown in Figures 7 and 8. To get the best fit of the heat capacities, A_0 needed to be treated as a third fitting parameter. The three parameters N, Θ_1 and A_0 for PVB, PVEB, PVIPB and PVTBB were: 10, $540.9 \pm 63.8 \text{ K}, 2.0 \times 10^{-4} \text{ K mol J}^{-1}; 15,411.1 \pm 16.1 \text{ K},$ 2.0×10^{-4} K mol J⁻¹; 18, 566.9 ± 42.9 K, 1.0×10^{-4} K mol J⁻¹; and 21, 512.4 ± 11.0 K, 2.0×10^{-4} K mol J⁻¹, respectively. With these parameters the heat capacities could be computed up to the glass transitions with average and r.m.s. errors of $0.75 \pm 1.4\%$, $0.24 \pm 0.41\%$, $0.64 \pm 1.2\%$ and $0.18 \pm 0.4\%$ for PVB, PVEB, PVIPB and PVTBB, respectively. To have an estimate of the lowtemperature heat capacity, a Θ_3 of 50 K was assumed, the value found experimentally for polystyrene (48 K)¹², which is also close to that for many other polymers with benzene rings in their structure¹⁰.

Although excellent correspondence of experiment and calculation was possible for the poly(vinyl benzoate)s, it is not possible to discuss the obtained Θ_1 values further. The large increase in skeletal modes that had to be fitted to experimental data due to lack of information on

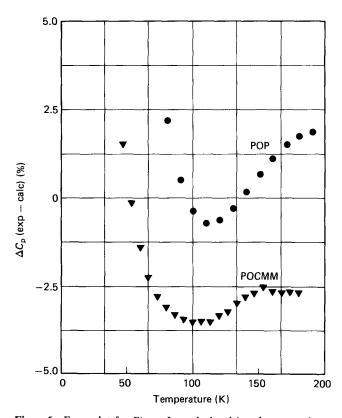


Figure 6 Error plot for Figure 5, recalculated into heat capacity at constant pressure using equation (1)

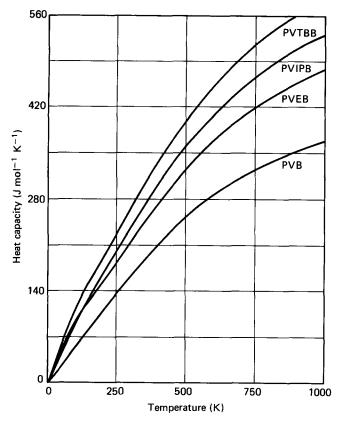


Figure 7 Computed heat capacities at constant volume of solid PVB, PVEB, PVIPB and PVTBB

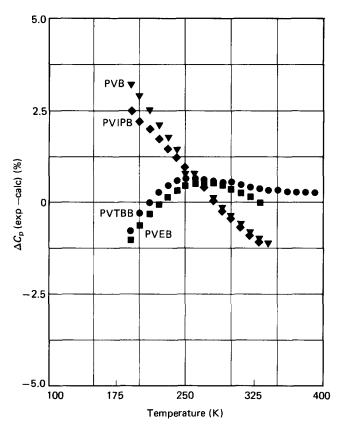


Figure 8 Error plot for Figure 7, recalculated into heat capacity at constant pressure using equation (1)

normal-mode frequencies of substituted phenylene groups prohibited the extraction of quantitative information. Lower-temperature heat capacities (20–190 K), expansivity, compressibility, as well as more precise

vibrational data are needed to progress in the discussion of the heat capacity of the poly(vinyl benzoate)s.

Polycyclopentene and cis-1,4-polyisoprene

Polycyclopentene (PCP) and cis-1,4-polyisoprene (PIP) (also cis-1,4-poly(2-methylbutadiene) or natural rubber) have as main characteristics a double bond in the backbone chain and are thus related to the prior analysed polybutadienes¹¹. The group vibration frequencies of PCP were derived by addition of a CH₂- group to the main chain of polybutadiene (see Tables 1 and 2). For polyisoprene a normal-mode calculation for the trans isomer is available²⁰. Since there are only small changes in the group vibrations in going from the trans to the cis isomer, these were taken also for the computation of the heat capacity contribution of the cis isomer (see Tables 1 and 2).

For solid PCP, which has a glass transition temperature of 173 K, recommended heat capacity data are available between 10 and 170 K; for PIP, with a T_g of 200 K, the data range is from 2 to 190 K (ref. 2). Figures 9 and 10 give the computation results for the two polymers.

For PCP, Θ_1 is 547.7 ± 33.9 K and Θ_3 is 153.9 ± 4.8 K (N=10), fitted over the temperature range from 40 to 170 K. The average and r.m.s. errors between 20 and 170 K are -0.19 ± 4.6 % (see Figure 10). For PIP, Θ_1 is 646.9 ± 33.0 K and Θ_3 is 58.3 ± 1.5 K (N=11), fitted over the data range from 7 to 190 K. The average and r.m.s. errors between 7 and 190 K are 0.9 ± 3.7 %. For both polymers, equation (1) was used to convert C_p to C_v with estimated melting temperatures of 260 and 301.2 K, respectively.

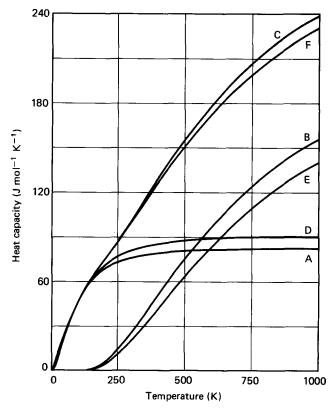


Figure 9 Computed heat capacities at constant volume of solid PCP and PIP: curves A, B, C and D, E, F represent the skeletal vibration contributions, group vibration contributions and total heat capacities of PCP and PIP, respectively

The errors are for both in the category of marginal correspondence. Figure 10 shows a systematic deviation, indicative of poorer fit of the Tarasov approximation. A similar deviation was also observed for the 1,4polybutadienes (cis and trans)11.

A comparison of the Θ_1 temperatures of polyethylene, cis- and trans-1,4-polybutadiene and PCP shows the sequence 519, 589, 599 and 564 K, respectively, in parallel with the stiffer, double-bond-containing backbone. For PIP a similar increase in Θ_1 is observed in going from polybutadiene to polyisoprene (594 to 650 K) as in going

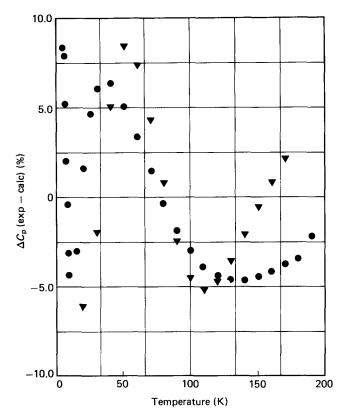


Figure 10 Error plot for Figure 9, recalculated into heat capacity at constant pressure using equation (1): ▼, PCP; ●, PIP

from polyethylene to polypropylene (519 to 633 K). As in the polypropylene case, the increase in Θ_1 is largely due to computation procedure, i.e. the inclusion of three C-CH₃ vibration modes in the skeletal vibrations⁶.

GENERAL DISCUSSION AND CONCLUSIONS

The analysis of this diverse group of solid linear macromolecules shows the success of the developed method of approximate vibrational spectra and its limitations. There are no problems in using i.r. and Raman data for evaluation of the group vibrations. Best are full normal-mode calculations, but, as a comparison of similar modes in Table 2 reveals, changes from molecule to molecule are too small to affect the computed heat capacities significantly. It may thus be possible to derive average frequencies for the listed frequencies in Table 1.

The skeletal vibrations are represented well by the twoparameter Tarasov equation as long as the molecule is strictly linear and the mass distribution and force constants do not vary significantly along the chain. Branching of chains, alternating heavy masses and inclusion of double bonds may need special discussion, but, with appropriate corrections, permits similar treatments for related compounds. A more detailed discussion of the problems of approximation of skeletal vibrations is given in ref. 21. In the macromolecules presented here, branches could be related to analogous, prior analysed vinyl, acrylic and methacrylic polymers⁶ by adjusting the intramolecular skeletal vibration frequency spectrum through Θ_1 . The effect of changes in mass were well represented by the usual $(1/M)^{1/2}$ dependence4.

Missing data on low-temperature heat capacity (10-200 K) hinder further advance in the discussion of intermolecular forces. Similarly, using the universal equation (1) for the estimation of heat capacity at constant volume limits a more precise discussion of effects such as pre-glass-transition increase of heat capacity, anharmonicity effects on heat capacity, and changes in vibration frequencies with temperature. Extensive p-v-T

Table 4 Methyl-group contributions to the heat capacity (J K⁻¹ mol⁻¹) of poly(vinyl benzoate)s^a

Group	Temperature (K)									
	50	100	150	200	250	300	350	400		
-CH ₃	4.2	10.2	15.2	18.6	21.2	23.7	26.2	28.9		
PVB (calc) PVB (exp) PVMB (calc)	25.5 — 29.7	54.3 — 64.5	81.6 — 96.8	108.4 111.6 127.0	136.0 137.5 157.2	164.0 163.4 187.7	191.7 184.1 217.9	218.1 — 247.0		
PVEB (exp) PVEB (calc) Error (%)	33.9	74.7 —	112.0 —	152.9 145.6 5.0	185.8 178.4 4.1	218.8 211.4 3.5	244.1	275.9 —		
PVIPB (exp) PVIPB (calc) Error	38.1	84.9 —		168.3 164.2 2.5	202.5 199.6 1.4	236.7 235.1 0.7		304.8		
PVTBB (exp) PVTBB (calc) Error (%)	42.3	95.1 —		190.0 182.8 4.4	232.0 220.8 5.1	273.1 258.8 5.5	314.2 296.5 6.0	333.7 —		

^a Group vibration contribution (-CH₃)-(-H) computed from model compound frequencies for polystyrene and poly(p-methylstyrene) of ref. 12 Frequencies: C-CH₃ stretch, 1755 K; C-H stretch, 4137 and 4264 K; C-H bend, 2114, 2109 and 1979 K; C-CH₃ bend, 446 and 515 K; and C-CH₃ torsion, 151 K Experimental data from ref. 2

data extrapolated to fully amorphous and crystalline samples would permit progress in this area. In the meantime, A_0 often needs to be used as a third adjustable parameter.

Many of the presently and earlier described macromolecules can be related through the substitution of a -H by a -CH₃. The method of analysis used up to now involved subtraction of the three -H group vibration contributions (one C-H stretching and two bending frequencies), adding of the -CH₃ group vibrations (C-CH₃ stretching, three C-H stretching and five C-H bending frequencies) and increasing the skeletal vibrations by three (two C-CH₃ bending and one C-CH₃ torsional frequency). Removing the -CH₃ further from the backbone chain, as in the poly(vinyl benzoate)s for example, one may question this procedure since the -CH₃ skeletal vibrations are most likely decoupled from the skeleton, as proven for p-substituted polystyrenes¹². This may be the reason for the added adjustment of A_0 needed in the poly(vinyl benzoate) computations.

Table 4 shows that computation of a group vibration contribution to heat capacity for -CH₃ substituting -H can be used to estimate the heat capacity of PVMB (poly(vinyl p-methylbenzoate)), PVEB, PVIPB and PVTBB by adding the proper heat capacity contribution once, twice, three times and four times to the calculated PVB heat capacity. The combined average and r.m.s. error is $3.8 \pm 1.8\%$, close to the expected experimental error.

With the series of polyimides and polyacrylates mentioned in the 'Introduction', whose heat capacities are reviewed in paper IX of ref. 2, a group of polymers is reached with structures too far from linear to be analysed by the present method. It may be of interest to develop a similar method using two-dimensional approximations of the skeletal vibration spectrum. It was shown before that such a method is applicable to layer-like inorganic crystals²².

ACKNOWLEDGEMENT

This work has been supported by the Polymers Program

of the National Science Foundation of the US (Grant No. 83-17097).

REFERENCES

7

- Cheban, Yu. V., Lau, S.-F. and Wunderlich, B. Colloid Polym. Sci. 1982, 260, 9; Lau, S.-F. and Wunderlich, B. J. Thermal Anal.
- Gaur, U., Shu, H. C., Mehta, A., Lau, S.-F., Wunderlich, B. B. and Wunderlich, B. J. Phys. Chem. Ref. Data 1981, 10, 89, 119, 1001, 1051; ibid. 1982, 11, 313, 1065; ibid. 1983, 12, 29, 65, 91
- 3 Grebowicz, J., Suzuki, H. and Wunderlich, B. Polymer 1985, 26,
- Loufakis, K. and Wunderlich, B. Polymer 1985, 26, 1875; ibid. 1986, 27, 563
- 5 Grebowicz, J., Lau, S.-F. and Wunderlich, B. J. Polym. Sci., Polym. Symp. 1984, 71, 19
- 6 Bu, H. S., Aycock, W. and Wunderlich, B. Polymer 1987, 28, 1165
 - Lim, S. and Wunderlich, B. Polymer 1987, 28, 777
- Xenopoulus, A. and Wunderlich, B. to be submitted
- Wesson, J. and Wunderlich, B. to be submitted
- 10 Cheng, S. Z. D., Lim, S., Judovits, L. H. and Wunderlich, B. Polymer 1987, 28, 10
- 11 Grebowicz, J., Aycock, W. and Wunderlich, B. Polymer 1987, 27,
- 12 Judovits, L., Bopp, R. C., Gaur, U. and Wunderlich, B. J. Polym. Sci., Polym. Phys. Edn 1986, 24, 2725
- Request update from ATHAS, Department of Chemistry, 13 University of Tennessee, Knoxville, TN 37996-1600, USA, c/o Bernhard Wunderlich
- 14 For a recent summary see Wunderlich, B. and Cheng, S. Z. D. Gazz. Chim. Ital. 1986, 116, 345
- 15 For a discussion of equation (1) see Grebowicz, J. and Wunderlich, B. J. Thermal Anal. 1985, 30, 229
- 16 Krimm, S., Liang, C. Y. and Sutherland, G. B. B. M. J. Polym. Sci. 1956, 22, 227
- 17 Haken, J. K. and Werner, R. L. Br. Polym. J. 1971, 3, 157
- 18 Wunderlich, B. J. Phys. Chem. 1960, 64, 1052
- 19 Nakagawa, I. and Mizushima, S. J. Chem. Phys. 1953, 21, 2195
- 20 Petcavich, R. J. and Coleman, M. M. J. Polym. Sci., Polym. Phys. Edn 1980, 18, 2097
- 21 Bu, H. S., Cheng, S. Z. D. and Wunderlich, B. J. Phys. Chem. 1987, **91**, 4179
- 22 Gaur, U., Pultz, G., Wiedemeier, H. and Wunderlich, B. J. Thermal Anal. 1981, 21, 309